首页 | 本学科首页   官方微博 | 高级检索  
     检索      


EPR and ENDOR analysis of Fe3+ impurity centers in fluoroelpasolite lattices
Authors:Loncke Frank  De Cooman Hendrik  Khaidukov Nicholas M  Vrielinck Henk  Goovaerts Etienne  Matthys Paul  Callens Freddy
Institution:Department of Solid State Sciences, Krijgslaan 281 - S1, B-9000, Gent, Belgium.
Abstract:Fe(3+) ions in hexagonal and cubic fluoroelpasolite crystals (A(1)(2)B(I)M(III)F(6)) have been investigated in a combined Electron Paramagnetic Resonance (EPR) and Electron Nuclear Double Resonance (ENDOR) study. A detailed analysis of the ENDOR spectra for the nearest (19)F and (23)Na shells in X (9.5 GHz) and Q band (34 GHz) allowed the complex EPR spectra to be disentangled and to determine the spin Hamiltonian parameters for the various S = 5/2 Fe(3+) centres. W-band (95 GHz) EPR measurements as a function of temperature were performed to provide unambiguous evidence about the absolute signs of the Zero Field Splitting (ZFS) and SuperHyperFine (SHF) parameters for Fe(3+) in Cs(2)NaAlF(6) as already determined from the ENDOR work. It could be concluded that all principal (19)F hyperfine values were positive, in agreement with earlier assignments in the literature for related systems. A comparative analysis of the (19)F SHF data for Fe(3+) at a perfectly octahedral site in the cubic crystal, and at two slightly trigonally distorted environments in the hexagonal crystals, indicates that the metal-to-ligand distance changes upon doping. The obtained set of parameters concerning one defect in various analogous environments can furthermore be used to test different methods of theoretical calculations for ZFS and SHF values.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号