首页 | 本学科首页   官方微博 | 高级检索  
     


Nonlocal damage-viscoplastic model for high temperature creep of single crystal superalloys
Authors:Bach Tuyet Trinh  Klaus Hackl
Affiliation:Institute of Mechanics, Ruhr-University of Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
Abstract:A new nonlocal damage-viscoplastic model for high temperature creep of single crystal superalloys is developed. It is based on the variational formulation consisting of free energy, plastic and damage dissipation potentials. Evolution equations for plastic strain and damage variables are derived from the minimum principle for dissipation potentials [1]. The model is capable of describing different stages of creep in a unified way. The evolution of dislocation densities of gamma and gamma prime phases in superalloys incorporates plastic deformation. It results in the time-dependence of the creep rate in primary and secondary creep. Tertiary creep is taken into account by introducing local and nonlocal damage variables. Herein the nonlocal one is considered as numerical treatment to remove mesh-dependence. Numerical results and comparisons with experimental data of the single crystal superalloy LEK94 are shown. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号