首页 | 本学科首页   官方微博 | 高级检索  
     


Radial spreading and stability of a thin rotating liquid droplet
Authors:Konrad Boettcher  Alexander Holbach  Peter Ehrhard
Affiliation:1. TU Dortmund, Biochemical and Chemical Engineering, Fluid Mechanics, Emil-Figge-Straße 68, D-44227 Dortmund, Germany;2. TU Dortmund, Biochemical and Chemical Engineering, Fluid Mechanics, Emil-Figge-Straße 68, D-44227 Dortmund, Germany

Konrad Boettcher, phone +49 (231) 755-2477, fax +49 (231) 755-3209

Alexander Holbach, Contributed within the frame of his diploma thesis

Abstract:Thin-film flows are involved in many coating processes, where it is desirable to achieve thin and homogeneous fluid layers. In the present investigations, we treat droplets, spreading on rotating solid substrates. Micro-scale effects appear, firstly, at the wetting front, where the film height tends to zero. Secondly, micro-scale effects may appear at other locations, where the free liquid/gas-interface approaches the solid substrate, as e.g. at film rupture. For such situations, molecular effects need to be considered, e.g. in form of the disjoining pressure (DJP), to get physically-correct solutions. Otherwise, the spreading can be modeled within the frame of continuum mechanics, augmented by the (empirical) law of Tanner to capture the contact-line dynamics. We present, on the one hand, an overview of several interesting issues, as (i) spreading with and without considering the DJP, (ii) spreading after central rupture, including hysteresis effects, and (iii) non-isothermal spreading, including temperature-dependent surface tension (Marangoni effect) and temperature-dependent density (Rayleigh-Bénard effect). On the other hand, we present results for the instability of the contact line, for which the contact line gets corrugated (under isothermal conditions). This instability goes along with a transition from (rotationally-symmetric) two-dimensional to three-dimensional behavior. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号