首页 | 本学科首页   官方微博 | 高级检索  
     


Motion and shape of an axisymmetric viscoplastic drop slowly falling through a viscous fluid
Authors:Irina Smagin  Manabendra Pathak  Olga M. Lavrenteva  Avinoam Nir
Affiliation:(1) Chemical Engineering Department, Technion—Israel Institute of Technology, Haifa, Israel;(2) Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna, 800013, Bihar, India;
Abstract:Slow sedimentation of a deformable drop of Bingham fluid in an unbounded Newtonian medium is studied using a variation of the integral equation method (Toose et al., J Eng Math 30:131–150, 1996, Int J Numer Methods Fluids 30:653–674, 1999). The Green function for the Stokes equation is used, and the non-Newtonian stress is treated as a source term. The computations are performed for a range of physical parameters of the system. It is demonstrated that initially deformed drop similar to Newtonian ones breaks up for high capillary number, Ca, and stabilizes to steady shapes at low Ca. Estimations of critical capillary number for specific initial deformations demonstrated its growth (increase in the stability of the drop) with the yield stress magnitude both for prolate and oblate initial shapes. Prolate initial shapes become more stable with the increase of the plastic viscosity. In contrast to this, for low yield stress, oblate shapes are destabilized with the growth of the plastic viscosity. This effect is similar to the effect of the viscosity of a Newtonian drop on its stability. However, at higher yield stress, the effect of plastic viscosity is reversed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号