首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Anti-electroviscous effect of near-surface 5CB liquid crystal and its boundary lubrication property
Authors:Email author" target="_blank">Xiangjun?ZhangEmail author  Xiaohao?Zhang  Yi?Xiong  Yu?Tian  Shizhu?Wen
Institution:(1) State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China
Abstract:The rheological properties of the near-surface 5CB (4-pentyl-4′-cyanobiphenyl) liquid crystal (LC) under an external electric field (EEF) are investigated using a dynamic quartz crystal microbalance (QCM). The real-time film-forming process and shearing response of the EEF-induced absorbed LC liquid are studied. The results indicate that the EEF-induced adsorbed LC is composed of a bulk liquid layer and a near-surface boundary layer. Within the boundary layer, the nematic 5CB LC presents an anti-electroviscous effect which may be due to the EEF-induced ordered structure. According to the estimation from QCM measurements, this near-surface layer is about 100 nm thick under certain electric strength and is irreversible even after the EEF is removed. Based on a QCM model, the near-surface LC layer presents a decreased and irreversible viscosity as the EEF voltage increases against the reversible electro-viscous effect of the bulk 5CB liquid crystal measured by rheometer and Raman spectrum measurements. The anti-electroviscous effect of the near-surface 5CB layer is also proved by an improved boundary lubrication property tested on a tribometer. The coefficient of friction of 5CB LC after a preliminary induction of EEF is the lowest one compared to those without EEF and during the application of EEF. The unique anti-electroviscous property of near-surface 5CB LC revealed in this article suggests a potential method to actively reduce shear resistance in boundary lubrication and in microfluidics.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号