Comparison of Ca2+ and Mg2+ binding to calmodulin. An enthalpy,entropy, and gibbs free energy analysis |
| |
Authors: | Harry P. Hopkins Jr. Richard H. Gayden |
| |
Affiliation: | (1) Department of Chemistry, Georgia State University, 30303 Atlanta, GA |
| |
Abstract: | A consistent set of GB, HB, and SB parameters have been determined from ion specific electrode, calorimetric, and spectrophotometric studies for the binding of Ca2+ and Mg2+ to bovine calmodulin at pH=7.0 and an ionic strength I of 0.113M. A non-linear least squares analysis of calcium specific ion electrode data yields, on a molar basis, four calcium dissociation constants: 10–7 for the first site, 10–5 for the fourth site, and two constants between these values. Both calorimetric experiments and an indicator method provide evidence that Mg2+ binds to calmodulin, probably at the same sites as Ca2+, but with affinities about 100 times smaller: 4×10–5 for the first site and 2×10–3 for the fourth. Calorimetric titrations on Ca2+ binding to calmodulin in three buffers are consistent with 0.46 protons released upon binding at all four sites and yield an average HB per site of 5.6 and 7.9 kJ-mol–1 for Ca2+ and Mg2+, respectively. The entropy of the system increases by 524 and 361 J-K–1-mol–1 when Ca2+ and Mg2+, respectively, bind to four sites on calmodulin, i.e., the selectivity of calmodulin for Ca2+ is primarily derived from entropy effects. Further analysis based on elimination of the entropy term for the metal ions demonstrates that calmodulin bound to Ca2+ has a larger entropy than the unbound calmodulin; the opposite is true for calmodulin bound to Mg2+. These analyses are consistent with the hypothesis that Ca2+ forms tight complexes at all sites on calmodulin and that release of waters of hydration upon binding is the source of the increase of entropy in the system. |
| |
Keywords: | Calmodulin binding Mg2+ Ca2+ thermodynamic analysis selectivity entropy effects |
本文献已被 SpringerLink 等数据库收录! |
|