首页 | 本学科首页   官方微博 | 高级检索  
     

基于径向基函数神经网络的传感布里渊散射谱特征提取
引用本文:刘银,付广伟,张燕君,毕卫红. 基于径向基函数神经网络的传感布里渊散射谱特征提取[J]. 光学学报, 2012, 32(2): 206002-75
作者姓名:刘银  付广伟  张燕君  毕卫红
作者单位:刘银:燕山大学信息科学与工程学院, 河北 秦皇岛 066004
付广伟:燕山大学信息科学与工程学院, 河北 秦皇岛 066004
张燕君:燕山大学信息科学与工程学院, 河北 秦皇岛 066004
毕卫红:燕山大学信息科学与工程学院, 河北 秦皇岛 066004
基金项目:国家973计划(2010CB327801)和河北省科技支撑计划(10213509D)资助课题。
摘    要:基于布里渊效应的分布式光纤传感器以其可在沿光纤中同时获得被测量场时间和空间上的连续分布信息,成为当前国际的研究热点。根据光纤中布里渊散射谱的传输特点和高精度特征提取的要求,提出了利用莱文伯-马夸特(L-M)算法调节权值的径向基函数神经网络(RBFN)对布里渊散射谱进行特征提取。通过与反向传播(BP)神经网络、五次多项式曲线拟合法和三次样条插值法进行预测比较,在中心频率为11.213GHz,权重比为4∶1的仿真散射谱模型中,本方法相对误差最小,仅0.0015179%,温度相对误差仅为0.152℃,且拟合度较好。在不同脉宽和不同温度下的同一检测系统中,前者的综合评价指标优于其他三种拟合方法。数值分析和实验研究均表明径向基函数神经网络适用于对布里渊散射谱进行拟合,有效提高了预测精度。

关 键 词:光纤光学  布里渊散射谱  径向基函数神经网络  拟合  分布式光纤传感器
收稿时间:2011-07-11

A Novel Method for Brillouin Scattering Spectrum of Distributed Sensing Systems Based on Radial Basis Function Neural Networks to Extract Features
Liu Yin Fu Guangwei Zhang Yanjun Bi Weihong. A Novel Method for Brillouin Scattering Spectrum of Distributed Sensing Systems Based on Radial Basis Function Neural Networks to Extract Features[J]. Acta Optica Sinica, 2012, 32(2): 206002-75
Authors:Liu Yin Fu Guangwei Zhang Yanjun Bi Weihong
Affiliation:Liu Yin Fu Guangwei Zhang Yanjun Bi Weihong(College of Information Science and Engineering,Yanshan University, Qinhuangdao,Hebei 066004,China)
Abstract:Distributed optical fiber sensing system based on Brilouin scattering has attracted wide attention for its ability of sensing the measured field by detecting the continuously distributed information in time and space. Considering the trait of the spectral shape variance during the Brillouin scattering process in optical fiber and the requirement of high accuracy, a novel method based on radial basis function neural (RBFN) networks in which the output layer weights are adjusted by Levenberg-Marquardt method is presented. A model of actual Brillouin spectrum is constructed by Gaussian white noise on the theoretical spectrum, the core frequency is 11.213 GHz and the weight is 4∶1. Comparing the proposed algorithm with traditional back propagation (BP) neural networks, polynomial five times curve fitting and piecewise cubic spline interpolation, the relative error of the new method is 0.0015179% and the temperature error is 0.152 ℃. The appraised parameters are better than other three algorithms at the same test system under different pulse widths and temperatures. The numerical and experimental results show that the RBFN networks is suitable for the fitting of Brillouin scattering spectrum, and the forecast accuracy is improved efficiently.
Keywords:fiber optics  Brillouin scattering spectrum  radial basis function neural (RBFN) networks  fitting method  distributed fiber sensors
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号