首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Antiproton-catalyzed fusion
Authors:Morgan  David L  Perkins  L John  Haney  Scott W
Institution:(1) Lawrence Livermore National Laboratory, 94550 Livermore, California, USA
Abstract:Because of the potential application to power production, it is important to investigate a wide range of possible means to achieve nuclear fusion, even those initially appearing infeasible. In antiproton-catalyzed fusion, the negative antiproton shields the repulsion between the positively charged nuclei of hydrogen isotopes, allowing a much higher level of penetration through the repulsive Coulomb barrier and greatly enhancing the fusion cross section. With their more compact wave function, the more massive antiprotons offer much more shielding than negative muons. If the antiproton could exist in the ground state with a nucleus for a sufficient time without annihilating, the fusion cross sections are so enhanced at low energies that at room temperature, values up to about 1000 barns (d + t) would be possible. Unfortunately, the cross section for antiproton annihilation with the incoming nucleus is even higher. A model giving an upper bound for the fusion to annihilation cross section ratio for all relevant energies indicates that each antiproton will catalyze no more than about one fusion. Since the energy to make one antiproton greatly exceeds the fusion energy released, this level of catalysis is far from adequate for power production.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号