首页 | 本学科首页   官方微博 | 高级检索  
     

具有时滞反馈的非对称双稳系统中的振动共振研究
引用本文:杨秀妮,杨云峰. 具有时滞反馈的非对称双稳系统中的振动共振研究[J]. 物理学报, 2015, 64(7): 70507-070507. DOI: 10.7498/aps.64.070507
作者姓名:杨秀妮  杨云峰
作者单位:西安科技大学理学院, 西安 710054
基金项目:国家自然科学基金(批准号: 71103143)和陕西省科学技术研究发展计划项目(批准号: 2013KJXX-40)资助的课题.
摘    要:研究了具有时滞反馈的非对称双稳系统中的振动共振现象. 在绝热近似条件下, 应用快慢变量分离法得到系统响应振幅的解析表达式Q, 分析了时滞参数α和不对称参数r对振动共振现象的影响. 结果表明: 在Q-α平台上, α可以诱导响应幅值的极大值以输入高频信号和低频信号的周期出现. 不对称参数并不影响共振发生的位置, 但是能够增强响应幅值. 在Q-B (B为高频信号振幅)平台上, 共振发生的位置BVR随着α呈现两种不同的周期关系, 且周期分别为输入高频信号和低频信号的周期. 在Q-Ω (Ω高频信号频率)平台上, 随着时滞参数的增大, 当B较小时, 在Ω的小值区间内, Q呈现出多重共振现象, 在Ω的大值区间, Q趋于定值.

关 键 词:时滞  非对称双稳系统  振动共振
收稿时间:2014-10-16

Vibrational resonance in an asymmetric bistable system with time-delay feedback
Yang Xiu-Ni,Yang Yun-Feng. Vibrational resonance in an asymmetric bistable system with time-delay feedback[J]. Acta Physica Sinica, 2015, 64(7): 70507-070507. DOI: 10.7498/aps.64.070507
Authors:Yang Xiu-Ni  Yang Yun-Feng
Affiliation:School of Science, Xi'an University of Science and Technology, Xi'an 710054, China
Abstract:Vibrational resonance is a resonant dynamics induced by a high-frequency periodic force at the low-frequency of the input periodic signal, and the input periodic signal is enhanced by a high-frequency signal. In this paper, a linear time-delayed feedback bistable system with an asymmetric double-well potential driven by both low-frequency and high-frequency periodic forces is constructed. Based on this model, the vibrational resonance phenomenon is investigated. Making use of the method of separating slow motion from fast motion under the conditions of Ω>>ω (Ω is the frequency of the high-frequency signal and ω is the one of the low-frequency signal), equivalent equations to the slow motion and the fast motion are obtained. Neglecting the nonlinear factors, the analytical expression of the response amplitude Q can be obtained, and the effects of the time-delay parameter α and the asymmetric parameter r on the vibrational resonance are discussed in detail. Moreover, the locations at which the vibrational resonance occurs, are obtained by means of solving the condition for a resonance to occur. A major consequence of time-delayed feedback is that it gives rise to a periodic or quasiperiodic pattern of vibrational resonance profile with respect to the time-delayed parameter, i.e. in Q-α plot, α can induce the Q which is periodic with the periods of the high-frequency signal and the low-frequency signal. The locations at which the vibrational resonance occurs are not changed by the asymmetric parameter r. However, the resonance amplitude is enhanced with increasing r. Specifically, the resonance amplitude is greatly enhanced when r>0.15. On the other hand, in the symmetric case (r=0), BVR at which the vibrational resonance occurs is periodic with the periods of high-frequency signal and low-frequency signal as α increases, which is shown in BVR-α (B is the amplitude of the high-frequency signal) plot. In Q-Ω plot, Q is presented by multi-resonance at the small values of B and Ω, but Q tends to a fixed value at the small values of B and the large values of Ω. We believe that the above theoretical observations will stimulate the experimental study of vibrational resonance in nonlinear oscillators and electronic circuits with time-delayed feedback.
Keywords:time delay  asymmetric bistable system  vibrational resonance
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号