首页 | 本学科首页   官方微博 | 高级检索  
     


Detection of reactive tetrahedral intermediates in a deep cavitand with an introverted functionality
Authors:Hooley Richard J  Iwasawa Tetsuo  Rebek Julius
Affiliation:The Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, MB-26, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
Abstract:Labile hemiaminal intermediates are stabilized by binding in a deep cavitand with an introverted aldehyde functionality. The aldehyde is attached to the cavitand via an anthracene spacer that rotates rapidly about the cavitand rim. The half-lives of these hemiaminals vary from 30 min to over 100 h at ambient temperature, due to hydrogen bonding with the organized peptide-like framework at the cavitand rim. The intermediates are sufficiently long-lived to allow study by 2D NMR techniques requiring many hours of acquisition time. Mechanistic analysis of the dehydration step shows first-order kinetics. The analogous "extroverted" reaction was also performed, where the addition took place outside the cavitand, displaying standard steady-state kinetics; no hemiaminal was observed. The cavitand shows strong selectivity based not on binding affinity but upon the rate of the product-forming step. A 10:1 ratio of product imines was obtained, while the initial binding ratio was 1:1. The cavitand acts as a mimic of enzymes in that it uses weak binding forces to stabilize reactive intermediates and isolates them from the medium. The synthetic environment allows direct detection and analysis of the intermediates, as opposed to natural systems that must be analyzed indirectly.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号