首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Scale‐adaptive tensor algebra for local many‐body methods of electronic structure theory
Authors:Dmitry I Lyakh
Institution:Oak Ridge National Laboratory, National Center for Computational Sciences, , Oak Ridge, Tennessee, 37831
Abstract:While the formalism of multiresolution analysis, based on wavelets and adaptive integral representations of operators, is actively progressing in electronic structure theory (mostly on the independent‐particle level and, recently, second‐order perturbation theory), the concepts of multiresolution and adaptivity can also be utilized within the traditional formulation of correlated (many‐particle) theory based on second quantization and the corresponding (generally nonorthogonal) tensor algebra. In this article, we present a formalism called scale‐adaptive tensor algebra, which introduces an adaptive representation of tensors of many‐body operators via the local adjustment of the basis set quality. Given a series of locally supported fragment bases of a progressively lower quality, we formulate the explicit rules for tensor algebra operations dealing with adaptively resolved tensor operands. The formalism suggested is expected to enhance the applicability of certain local correlated many‐body methods of electronic structure theory, for example, those directly based on atomic orbitals (or any other localized basis functions in general). © 2014 Wiley Periodicals, Inc.
Keywords:electronic structure  many‐body theory  tensor algebra  local coupled‐cluster method  multiresolution
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号