首页 | 本学科首页   官方微博 | 高级检索  
     


Metal-dependent self-assembly of a microbial surfactant
Authors:Owen Tate  Pynn Roger  Hammouda Boualem  Butler Alison
Affiliation:Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106-9510, USA.
Abstract:Small-angle neutron scattering (SANS), cryogenic transmission electron microscopy (cryo-TEM), and dynamic light scattering (DLS) were used to study the metal-dependent phase behavior of microbially produced surfactants-marinobactins B, D, and E (MB, MD, and ME). Marinobactins A-E are siderophores that facilitate Fe(III) acquisition by the source bacterium through the coordination of Fe(III) by the peptidic headgroup. All of the marinobactins have the same six amino acid headgroup but differ in the length and saturation of the monoalkyl fatty acid tail. Fe(III) coordinated to ME (Fe(III)-ME) was found to form micelles with a diameter of approximately 3.5 nm that underwent a supramolecular transformation to produce a monodisperse population of vesicles with an average diameter ranging from approximately 90 to 190 nm upon addition of Cd(II), Zn(II), or La(III). SANS profiles of the transition-metal-induced phase exhibit a Bragg peak at QB approximately 0.11-0.12 A-1 and were fit to a SANS model for multilamellar vesicles that have an interbilayer repeat distance of 2pi/QB approximately 5.6-5.0 nm. Cryo-TEM images of the Zn(II)-induced phase reveals the presence of approximately 100 nm diameter approximately spherical aggregates of uniform electron density. The temperature dependence of the Zn(II)-induced transformation was also investigated as a function of the length and degree of unsaturation of the Fe(III)-marinobactin fatty acid tail. The Cd(II)-, Zn(II)-, and La(III)-induced phase changes have features that are similar to those of the previously reported Fe(III)-induced micelle-to-vesicle transition, and this observation has opened questions regarding the role that Cd(II) and Zn(II) may play in bacterial iron uptake.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号