首页 | 本学科首页   官方微博 | 高级检索  
     

激光诱导击穿光谱联合UVE变量优选检测大豆油中的铬含量
引用本文:孙通,吴宜青,刘秀红,莫欣欣,刘木华. 激光诱导击穿光谱联合UVE变量优选检测大豆油中的铬含量[J]. 光谱学与光谱分析, 2016, 36(10): 3341-3345. DOI: 10.3964/j.issn.1000-0593(2016)10-3341-05
作者姓名:孙通  吴宜青  刘秀红  莫欣欣  刘木华
作者单位:1. 江西农业大学生物光电技术及应用重点实验室,江西 南昌 330045
2. 江西出入境检验检疫局综合技术中心,江西 南昌 330038
基金项目:国家自然科学基金项目(31271612),江西省自然科学基金项目(20132BAB214010
摘    要:利用激光诱导击穿光谱(LIBS)技术对大豆油中的重金属Cr进行检测研究。以松木木片对重金属Cr进行富集,采用AvaSpec双通道高精度光谱仪在206.28~481.77 nm波段范围内采集松木木片样本的LIBS光谱,利用无信息变量消除(UVE)方法筛选与重金属Cr相关的波长变量,应用偏最小二乘(PLS)回归建立大豆油中重金属Cr的定标模型,并与单变量及全波段PLS定标模型进行比较。结果表明,相比单变量及全波段PLS定标模型,UVE-PLS定标模型的性能更优,其相关系数、校正均方根误差、交互验证均方根误差及预测均方根误差分别为0.990,0.045,0.050及0.054 mg·g-1。经UVE变量筛选后,UVE-PLS定标模型所用的波长变量数仅为全波段PLS的2%。由此可见,UVE是一种有效的波长变量筛选方法,能有效筛选出与重金属Cr相关的波长变量。

关 键 词:激光诱导击穿光谱  重金属铬  无信息变量消除  偏最小二乘  大豆油   
收稿时间:2015-08-11

Detection of Chromium Content in Soybean Oil by Laser Induced Breakdown Spectroscopy and UVE Method
SUN Tong,WU Yi-qing,LIU Xiu-hong,MO Xin-xin,LIU Mu-hua. Detection of Chromium Content in Soybean Oil by Laser Induced Breakdown Spectroscopy and UVE Method[J]. Spectroscopy and Spectral Analysis, 2016, 36(10): 3341-3345. DOI: 10.3964/j.issn.1000-0593(2016)10-3341-05
Authors:SUN Tong  WU Yi-qing  LIU Xiu-hong  MO Xin-xin  LIU Mu-hua
Affiliation:1. Optics-Electronics Application of Biomaterials Lab,Jiangxi Agricultural University,Nanchang 330045,China2. Technical Center of Inspection and Quarantine,Jiangxi Entry-Exit Inspection and Quarantine Bureau, Nanchang 330038,China
Abstract:In order to monitor chromium (Cr)content in soybean oil,laser induced breakdown spectroscopy (LIBS)was used to detect Cr content in this research.Pine wood chips was used to enrich heavy metal of Cr,and the spectra of pine wood chips were acquired in the wavelength range of 206.28~481.77 nm by a two-channel high-precision spectrometer.Then,uninforma-tive variable elimination (UVE)method was used to select sensitive wavelength variables for heavy metal of Cr,and calibration model of Cr in soybean oil was developed with partial least squares (PLS)regression,the performance of the calibration model was compared to univariate and full PLS calibration models.The results indicate that the performance of UVE-PLS calibration model is better than that of univariate and full PLS calibration models,the correlation coefficient,root mean square error of cali-bration (RMSEC),root mean square error of cross validation (RMSECV),root mean square error of prediction (RMSEP)are 0.990,0.045 mg·g-1 ,0.050 mg·g-1 and 0.054 mg·g-1 ,respectively.After UVE variable selection,the number of wave-length variables in UVE-PLS calibration model is about 2% of wavelength variables in full PLS calibration model.This means UVE is an effective variable selection method which can select correlative variables for heavy metal of Cr.
Keywords:Laser induced breakdown spectroscopy  Chromium  Uninformative variable elimination  Partial least squares  Soy-bean oil
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号