首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of structural parameters of Ni-ScSZ cermet components on the SOFC anodes characteristics
Authors:Email author" target="_blank">A?V?SpirinEmail author  A?V?Nikonov  A?S?Lipilin  V?R?Khrustov  K?A?Kuterbekov  T?N?Nurakhmetov  K?Zh?Bekmyrza
Institution:1.Institute of Electrophysics, Ural Branch,Russian Academy of Sciences,Yekaterinburg,Russia;2.Gumilev Eurasian National University,Astana,Republic of Kazakhstan
Abstract:The effect of the degree of dispersion and the ratio of initial components of metalloceramic composites based on Ni and Sc2O3-stabilized ZrO2 (Ni/ScSZ) on the kinetics of sintering, conductivity, and polarization resistance of the corresponding anodes in solid-oxide fuel cells (SOFC) is studied. The composites are prepared from nano- and submicrosized powders of NiO and ScSZ (10.5 mol % Sc2O3) containing particles with the average size of 0.02–0.33 μm. Anode composites of three types differing in the ratio of initial components (NiO-ScSZ) with different degrees of dispersion: micro-micro, nano-micro, and nano-nano are studied. Due to the ratio of particle sizes, the anodic composites of the nano-nano type demonstrate the preferential electronic conduction (the percolation threshold) starting from the Ni content of about 35 vol %, in contrast to the other two types of anodic composites for which this threshold is achieved at 30 vol %. The lowest polarization resistance is typical of anode composites with the Ni content of about 40 vol %. The use of one or both components in the nanosized state makes it possible to decrease the anodic polarization up to two times. It is demonstrated that an active cermet anode for SOFC can be fabricated in the form of a planar three-layer structure Ni/ScSZ-ScSZ-Ni/ScSZ prepared from nanosized powders by the tape casting technique and cosintering.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号