首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sparse and nonnegative sparse D-MORPH regression
Authors:Genyuan?Li  Roberto?Rey-de-Castro  Xi?Xing  Email author" target="_blank">Herschel?RabitzEmail author
Institution:1.Department of Chemistry,Princeton University,Princeton,USA
Abstract:An underdetermined linear algebraic equation system \(\mathbf{y}={\varvec{\Phi }}\mathbf{x}\), where \({\varvec{\Phi }}\) is an \(m\times n (m<n)\) rectangular constant matrix with rank \(r\le m\) and \(\mathbf{y}\in \mathrm {Ran}({\varvec{\Phi }})\) (range of \({\varvec{\Phi }})\), has an infinite number of solutions. Diffeomorphic modulation under observable response preserving homotopy (D-MORPH) regression seeks a solution satisfying the extra requirement of minimizing a chosen cost function, \({\mathcal {K}}\). A wide variety of choices of the cost function makes it possible to achieve diverse goals, and hence D-MORPH regression has been successfully applied to solve a range of problems. In this paper, D-MORPH regression is extended to determine a sparse or a nonnegative sparse solution of the vector \(\mathbf{x}\). For this purpose, recursive reweighted least-squares (RRLS) minimization is adopted and modified to construct the cost function \({\mathcal {K}}\) for D-MORPH regression. The advantage of sparse and nonnegative sparse D-MORPH regression is that the matrix \({\varvec{\Phi }}\) does not need to have row-full rank, thereby enabling flexibility to search for sparse solutions \(\mathbf{x}\) with ancillary properties in practical applications. These tools are applied to (a) simulation data for quantum-control-mechanism identification utilizing high dimensional model representation (HDMR) modeling and (b) experimental mass spectral data for determining the composition of an unknown mixture of chemical species.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号