首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Probing ground-state single-electron self-exchange across a molecule-metal interface
Authors:Wang Yuanmin  Sevinc Papatya C  He Yufan  Lu H Peter
Institution:Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
Abstract:We have probed single-molecule redox reaction dynamics of hemin (chloride) adsorbed on Ag nanoparticle surfaces by single-molecule surface-enhanced Raman spectroscopy (SMSERS) combined with spectroelectrochemistry. Redox reaction at the molecule/Ag interface is identified and probed by the prominent fluctuations of the Raman frequency of a specific vibrational mode, ν(4), which is a typical marker of the redox state of the iron center in a hemin molecule. On the basis of the autocorrelation and cross-correlation analysis of the single-molecule Raman spectral trajectories and the control measurements of single-molecule spectroelectochemistry and electrochemical STM, we suggest that the single-molecule redox reaction dynamics at the hemin-Ag interface is primarily driven by thermal fluctuations. The spontaneous fluctuation dynamics of the single-molecule redox reaction is measured under no external electric potential across the molecule-metal interfaces, which provides a novel and unique approach to characterize the interfacial electron transfer at the molecule-metal interfaces. Our demonstrated approaches are powerful for obtaining molecular coupling and dynamics involved in interfacial electron transfer processes. The new information obtained is critical for a further understanding, design, and manipulation of the charge transfer processes at the molecule-metal interface or metal-molecule-metal junctions, which are fundamental elements in single-molecule electronics, catalysis, and solar energy conversion.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号