首页 | 本学科首页   官方微博 | 高级检索  
     

��Ҷ˹���Ϸ�λ�ع��Gibbs�����㷨
引用本文:������,������,����Ǭ,��ï��. ��Ҷ˹���Ϸ�λ�ع��Gibbs�����㷨[J]. 应用概率统计, 2019, 35(2): 178-192. DOI: 10.3969/j.issn.1001-4268.2019.02.006
作者姓名:������  ������  ����Ǭ  ��ï��
作者单位:???????????????????, ????, 100081; ???????????????????, ????, 471023; ?й????????????????о?????, ????, 100872
摘    要:

关 键 词:????????Laplace???(CALD)  ???????????????(MCMC)??  ??λ???  Gibbs????  ??????  ???????  

Gibbs Sampler Algorithm of Bayesian Weighted Composite Quantile Regression
TIAN Yuzhu,WANG Liyong,WU Xinqian,TIAN Maozai. Gibbs Sampler Algorithm of Bayesian Weighted Composite Quantile Regression[J]. Chinese Journal of Applied Probability and Statisties, 2019, 35(2): 178-192. DOI: 10.3969/j.issn.1001-4268.2019.02.006
Authors:TIAN Yuzhu  WANG Liyong  WU Xinqian  TIAN Maozai
Affiliation:School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471023, China; Center for Applied Statistics of Renmin;University of China, Beijing, 100872, China
Abstract:Most regression modeling is based on traditional mean regression which results in non-robust estimation results for non-normal errors. Compared to conventional mean regression, composite quantile regression (CQR) may produce more robust parameters estimation. Based on a composite asymmetric Laplace distribution (CALD), we build a Bayesian hierarchical model for the weighted CQR (WCQR). The Gibbs sampler algorithm of Bayesian WCQR is developed to implement posterior inference. Finally, the proposed method are illustrated by some simulation studies and a real data analysis.
Keywords:CALD  Markov chain Monte Carlo (MCMC) algorithm  quantile regression  Gibbs sampler  hierarchical model  posterior inference  
点击此处可从《应用概率统计》浏览原始摘要信息
点击此处可从《应用概率统计》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号