首页 | 本学科首页   官方微博 | 高级检索  
     


Texture predictions using a polycrystal plasticity model incorporating neighbor interactions
Affiliation:Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, U.S.A.
Abstract:A viscoplastic model is presented for distributing the deformation applied to a polycrystal in a non-uniform fashion among the constituent crystals. Interactions with surrounding crystals are incorporated in the calculation of the deformation rate of each crystal through an appropriately defined local neighborhood. A compliance tensor is computed for each crystal based on a viscoplastic constitutive relation for deformation by crystallographic slip. The compliance of the crystal relative to that of its neighborhood provides a means for partitioning the macroscopic deformation rate among the crystals. The deviation of the crystal deformation rate from the macroscopic value is suitably scaled to obtain the crystal spin. Polycrystal simulations of crystallographic texture development using this model are compared to the results of similar calculations using the Taylor model, to finite element simulations of a model polycrystal, and to experimental data. The model incorporating neighbor interactions is shown to result in improved texture predictions, in terms of both the intensity levels and the locations of certain texture components.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号