首页 | 本学科首页   官方微博 | 高级检索  
     


A ribozyme and a catalytic DNA with peroxidase activity: active sites versus cofactor-binding sites
Authors:Travascio P  Bennet A J  Wang D Y  Sen D
Affiliation:Department of Chemistry, Institute of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, V5A 1S6, BC Canada.
Abstract:BACKGROUND: An 18-nucleotide DNA oligomer, PS2.M, derived using an in vitro selection method was previously reported to bind hemin (Fe(III)-protoporphyrinIX) with submicromolar affinity. The DNA-hemin complex exhibited DNA-enhanced peroxidative activity. PS2. M is guanine-rich and requires potassium ions to fold to its active conformation, consistent with its forming a guanine-quaduplex. In investigating the specific catalytic features of PS2.M we tested the peroxidative properties of its RNA version (rPS2.M) as well as that of an unrelated DNA guanine-quadruplex, OXY4. RESULTS: The hemin-binding affinity of rPS2.M was found to be 30-fold weaker than that of PS2.M. The UV-visible spectra and kinetics of enzymatic peroxidation of the RNA-hemin complex, however, were nearly identical to those of its DNA counterpart. Both displayed peroxidase activity substantially greater than those of heme proteins such as catalase and Fe(III)-myoglobin. Kinetic analysis suggested that PS2. M and rPS2.M catalyzed the breakdown of the hemin-hydrogen peroxide covalent complex to products. The hemin complex of folded OXY4 (which bound hemin as strongly as did rPS2.M) had a distinct absorption spectrum and only a minor peroxidase activity above the background level. CONCLUSIONS: The results indicated that it is possible for RNA and DNA of the same sequence to fold to form comparable cofactor-binding sites, and to show comparable catalytic behavior. The results further suggest that only a subset of cofactor-binding sites formed within folded nucleic acids might be able to function as active sites, by providing the appropriate chemical environments for catalysis.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号