首页 | 本学科首页   官方微博 | 高级检索  
     


A comparison of solution and solid state coordination environments for calcium(II), zirconium(IV), cadmium(II) and mercury(II) complexes with dipicolinic acid and methylimidazole derivatives
Abstract:Four new supramolecular compounds, (2-mimH)[Ca(pydcH)3][Ca(pydcH2)(pydc)(H2O)2]·4H2O (1), (1-mimH)2[Zr(pydc)3] (2), (2-mimH)2[Cd(pydc)2]·8H2O (3), and (2-mimH)2[Hg(pydc)2]·8H2O (4) [where pydcH2 = pyridine-2,6-dicarboxylic acid (dipicolinic acid), 1-mim = 1-methylimidazole, and 2-mim = 2-methylimidazole], have been synthesized and characterized by elemental analyses, spectroscopic techniques (IR, UV–vis, 1H NMR, and 13C NMR), thermal (TG/DTG/DTA) analysis as well as single-crystal X-ray diffraction. All four compounds are proton-transfer salts of the methylimidazolium cations and metal complex anions that crystallized from a solution of pyridine-2,6-dicarboxylic acid, methylimidazole, metal nitrates or chlorides as starting materials. The coordinating dicarboxylic acid is deprotonated at the carboxyl group and methylimidazole is protonated to balance the charge. In the crystal structures of 14, hydrogen bonding and ππ stacking play important roles. Water clusters are formed in 1, 3, and 4. The equilibrium constants of dipicolinic acid (pydc) and methylimidazole derivatives (1-mim and 2-mim), pydc-2-mim, pydc-1-mim proton-transfer systems as well as those of their complexes were investigated by a potentiometric pH titration method. The stoichiometries of most of the complex species in solution were very similar to the cited crystalline metal ion complexes.
Keywords:Solution studies  Methylimidazole  Nine- and eight-coordinated Ca(II)  Crystal structure
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号