首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An Examination of the Coordination Chemistry of L2Pt(1,2-DITHIOLENES) Using Atmospheric Pressure Chemical Ionization Mass Spectrometry
Abstract:Abstract

Atmospheric pressure chemical ionization mass spectrometry (APCI–MS) has been utilized in the characterization of two series of platinum dithiolene complexes, (COD)Pt(dt) 1, (COD)–Pt(edt) 2, (COD)Pt(dmid) 3, (COD)Pt(mnt) 4, (COD)Pt(eddo) 5, (COD)Pt(dddt) 6 and (Ph3P)2Pt(dt) 7, (Ph3P)2Pt(edt) 8, (Ph3P)2Pt(dmid) 9, (Ph3P)2Pt(dmit) 10, (Ph3P)2Pt(mnt) 11 (where COD = 1,5–cyclooctadiene, dt = ethane–1,2–dithiolate, edt = ethylene–1,2–dithiolate, dmid = 1,3–dithiole–2–oxo–4,5–dithiolate, dmit = 1,3–dithiole–2–thione–4,5–dithiolate, mnt = maleonitrile–1,2–dithiolate, eddo = 4–(ethylene–1′,2′–dithiolate)–1,3-dithiole–2–one, and dddt = 5,6–dihydro–1,4–dithiin–2,3–dithiolate). The series that contains triphenylphosphine is labile toward the loss of HPPh3 +. In addition, an orthometallated species involving the platinum and triphenylphosphine is identified. A dimer is identified for 2, which is shown to be a product of the experiment and not present in the parent material. In addition, a 1:1 adduct with NH4 + is identified for 4 and 11 where the NH4 + originates from the acid hydrolysis of acetonitrile. Finally, a highly unique ion, Pt+, a bare platinum ion, is observed in all COD complexes indicating that a radical mechanism must accompany the decomposition of the COD complexes during the fragmentation process.
Keywords:Dithiolenes  platinum  mass spectrometry  APCI–MS
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号