首页 | 本学科首页   官方微博 | 高级检索  
     


Complexation studies of Cm(III), Am(III), and Eu(III) with linear and cyclic carboxylates and polyaminocarboxylates
Abstract:Solvent extraction and potentiometric titration methods have been used to measure the stability constants of Cm(III), Am(III), and Eu(III) with both linear and cyclic carboxylates and polyaminocarboxylates in an ionic strength of 0.1?mol?L?1 (NaClO4). Luminescence lifetime measurements of Cm(III) and Eu(III) were used to study the change in hydration upon complexation over a range of concentrations and pH values. Aromatic carboxylates, phthalate (1,2 benzene dicarboxylates, PHA), trimesate (1,3,5 benzene tricarboxylates, TSA), pyromellitate (1,2,4,5 tetracarboxylates, PMA), hemimellitate (1,2,3 benzene tricarboxylates, HMA), and trimellitate (1,2,4 benzene tricarboxylates, TMA) form only 1?:?1 complexes, while both 1?:?1 and 1?:?2 complexes were observed with PHA. Their complexation strength follows the order: PHA~TSA>TMA>PMA>HMA. Carboxylate ligands with adjacent carboxylate groups are bidentate and replace two water molecules upon complexation, while TSA displaces 1.5 water molecules of hydration upon complexation. Only 1?:?1 complexes were observed with the macrocyclic dicarboxylates 1,7-diaza-4,10,13-trioxacyclopentadecane-N,N′-diacetate (K21DA) and 1,10-diaza-4,7,13,16-tetraoxacyclooctadecane-N,N′-diacetate (K22DA); both 1?:?1 and 1?:?2 complexes were observed with methyleneiminodiacetate (MIDA), hydroxyethyleneiminodiacetate (HIDA), benzene-1,2-bis oxyacetate (BDODA), and ethylenediaminediacetate (EDDA), while three complexes (1?:?1, 1?:?2, and 1?:?3) were observed with pyridine 2,6 dicarboxylates (DPA) and chelidamate (CA). The complexes of M-MIDA are tridentate, while that of M-HIDA is tetradentate in both 1?:?1 and 1?:?2 complexes. The M-BDODA and M-EDDA complexes are tetradentate in the 1?:?1 and bidentate in the 1?:?2 complexes. The complexes of M-K22DA are octadentate with one water molecule of hydration, while that of K21DA is heptadentate with two water molecules of hydration. Simple polyaminocarboxylate 1,2 diaminopropanetetraacetate (PDTA) and ethylenediamine N,N′-diacetic-N,N′-dipropionate (ENDADP) like ethylenediaminetetraacetate (EDTA) form only 1?:?1 complexes and their complexes are hexadentate. Polyaminocarboxylates with additional functional groups in the ligand backbone, e.g., ethylenebis(oxyethylenenitrilo) tetraacetate (EGTA), and 1,6 diaminohexanetetraacetate (HDTA) or with additional number of groups in the carboxylate arms diethylenetriamine pentaacetato-monoamide (DTPA-MA), diethylenetriamine pentaacetato-bis-methoxyethylamide (DTPA-BMEA), and diethylenetriamine pentaacetato-bis glucosaamide (DTPA-BGAM) are octadentate with one water molecule of hydration, except N-methyl MS-325 which is heptadentate with two water molecules of hydration and HDTA which is probably dimeric with three water molecules of hydration. Macrocyclic tetraaminocarboxylate, 1,4,7,10-tetraazacyclododecanetetraacetate (DOTA) forms only 1?:?1 complex which is octadentate with one water molecule of hydration. The functionalization of these carboxylates and polycarboxylates affect the complexation ability toward metal cations. The results, in conjunction with previous results on the Eu(III) complexes, provide insight into the relation between ligand steric requirement and the hydration state of the Cm(III) and Eu(III) complexes in solution. The data are discussed in terms of ionic radii of the metal cations, cavity size, basicity, and ligand steric effects upon complexation.
Keywords:Complexation  Luminescence  Cm(III)  Am(III)  Eu(III)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号