Abstract: | A series of Co(II) azamacrocyclic complexes, 12 Brunel, D, Bellocq, N, Sutra, P, Cauvel, A, Lasperas, M, Moreau, P, Di Renzo, F, Galarneau, A and Fajula, F. 1998. Coord. Chem. Rev., 178–180: 1085[Crossref], [Web of Science ®] , [Google Scholar]aneN4, 14 De Vos, DE, Dams, M, Sels, BF and Jacobs, PA. 2002. Chem. Rev., 102: 3615[Crossref], [PubMed], [Web of Science ®] , [Google Scholar]aneN4, Bzo2 12 Brunel, D, Bellocq, N, Sutra, P, Cauvel, A, Lasperas, M, Moreau, P, Di Renzo, F, Galarneau, A and Fajula, F. 1998. Coord. Chem. Rev., 178–180: 1085[Crossref], [Web of Science ®] , [Google Scholar]aneN4 and Bzo2 14 De Vos, DE, Dams, M, Sels, BF and Jacobs, PA. 2002. Chem. Rev., 102: 3615[Crossref], [PubMed], [Web of Science ®] , [Google Scholar]aneN4, have been encapsulated in the nanocavity of zeolite-Y by a one pot template condensation reaction. Co(II) complexes with azamacrocyclic ligands were entrapped in the nanocavity of zeolite-Y by a two-step process in the liquid phase: (i) adsorption of [bis(diamine)cobalt(II)], [Co(N–N)2]-NaY, in the supercages of the zeolite, and (ii) in situ condensation of the cobalt(II) precursor complex with diethyloxalate. The new host/guest nanocomposite materials (HGNM) have been characterized by FTIR, DRS and UV-Vis spectroscopic techniques, XRD and elemental analysis, as well as nitrogen adsorption. These complexes (neat and HGNM) were used for epoxidation of styrene with O2 as oxidant in different solvents. Electronic spectra of the reaction mixture indicated oxidation proceeds through a free radical mechanism. |