Quantitative vibration amplitude measurement with time-averaged digital speckle pattern interferometry |
| |
Authors: | W.O Wong K.T Chan |
| |
Affiliation: | Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China |
| |
Abstract: | A new method of using time-averaged digital speckle pattern interferometry for the quantitative measurement of vibration amplitude was developed. Signal processing techniques especially the Hilbert transformation for quantitative evaluation of the Bessel fringes obtained in time-averaged digital speckle pattern interferometry were explored. The quadrature signal after Hilbert transformation is equivalent to a 90° phase-shifted interferogram for a monotonically increasing or decreasing phase function. An algorithm was developed for Bessel fringe contrast enhancement and phase extraction. The techniques were tested numerically and experimentally. Sub-fringe quantification of the time-averaged vibration fringes is realised with the proposed method. Compared with the commonly used phase shift method which requires a minimum of two images for image processing, this method requires only one fringe pattern for data extraction. |
| |
Keywords: | Time-average Digital speckle pattern interferometry Hilbert transformation Quantitative vibration measurement |
本文献已被 ScienceDirect 等数据库收录! |