首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis, characterization and thermal investigation of M[M(C2O4)3xH2O (x=4 for M=Cr(III); x=2 for M=Sb(III) and x=9 for M=La(III))
Authors:N. Deb   S. D. Baruah   N. Sen Sarma  N. N. Dass
Affiliation:

a  Department of Chemistry, North Eastern Regional Institute of Science & Technology Nirjuli 791 109, Arunachal Pradesh India

b  Regional Research Laboratory Jorhat 785 006, Assam India

c  Department of Chemistry, Dibrugarh University Dibrugarh 786 004, Assam India

Abstract:The complexes, M[M(C2O4)3xH2 O, where x=4 for M=Cr(III), x=2 for M=Sb(III) and x=9 for M=La(III) have been synthesized and their thermal stability was investigated. The complexes were characterized by elemental analysis, IR and electronic spectral data, conductivity measurement and powder X-ray diffraction (XRD) studies. The chromium(III)tris(oxalato)chromate(III)tetrahydrate (COT), Cr[Cr(C2 O4)3]·4H2O, released water in a stepwise fashion. Removal of the last trace of water was accompanied by a partial decomposition of the oxalate group. Thermal investigation using TG, DTG and DTA techniques in air produced Cr2O3 at 858°C through the intermediate formation of Cr2O3 and CrC2O4 at around 460°C. While DSC study in nitrogen up to 670°C produced a mixture of Cr2O3 and CrC2O4. In antimony(III)tris(oxalato)antimonate(III)dihydrate (AOD), Sb[Sb(C2O4)3]·3H2O the dehydration took place during the decomposition of precursor at 170–290°C and finally at ca. 610°C Sb2 O5 along with trace amounts of Sb2O4 were produced. Trace amount of Sb2O3 and Sb along with Sb2O is proposed as the end product at 670°C of AOD in nitrogen. The oxide La2O3 is formed at 838°C from the study with TG, DTG and DTA in air of lanthanum(III)tris(oxalato)lanthanum(III)nonahydrate (LON), La[La(C2O4)3]·9H2O. Intermediate dioxycarbonate, La2O2CO3 was generated at 526°C prior to its decomposition to lanthanum oxide in air; whereas in N2 the formation of La2(CO3)3 at 651°C was proposed. The thermal parameters have been evaluated for each step of the dehydration and decomposition of COT, AOD and LON using five non-mechanistic equations i.e. Flynn and Wall, Freeman and Carroll, Modified Freeman and Carroll, Coats–Redfern and MacCallum–Tanner equations. Kinetic parameters, such as, E*, ko, ΔH*, ΔS* etc. were also supplemented by DSC studies in nitrogen for all the three complexes. Some of the intermediate species have been identified by analytical and powder XRD studies. Tentative schemes has been proposed for the decomposition of all three compounds in air and nitrogen.
Keywords:Oxalato   Thermal decomposition   Kinetic parameter   X-ray diffraction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号