首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Possible conformational change within the desolvated and cationized sBBI/trypsin non-covalent complex during the collision-induced dissociation process
Authors:Darii Ekaterina  Saravanamuthu Gunalini  Afonso Carlos  Alves Sandra  Gut Ivo  Tabet Jean-Claude
Institution:Equipe de Spectrométrie de masse, Institut Parisien de Chimie Moléculaire, UMR 7201, Université Pierre et Marie Curie-Paris 6, 4 place Jussieu, 75252 Paris Cedex 05, France.
Abstract:Electrospray ionization mass spectrometry (ESI-MS) has become an analytical technique widely used for the investigation of non-covalent protein-protein and protein-ligand complexes due to the soft desolvation conditions that preserve the stoichiometry of the interacting partners. Dissociation studies of solvated or desolvated complexes (in the source and in the collision cell, respectively) allow access to information on protein conformation and localization of the metal ions involved in protein structure stabilization and biological activity. The complex of bovine trypsin and small soybean Bowman-Birk inhibitor (sBBI) was studied by ESI-MS to determine changes occurring within the complex during its transfer from droplets to the gas phase independently of the ion polarity. Under collision-induced dissociation (CID) conditions, unexpected binding of the Ca(2+) ion (cofactor of native trypsin) to the inhibitor molecule was observed within the desolvated sBBI/trypsin/Ca(2+) complex (with a 1:1:1 stoichiometry). This formal gas-phase migration of the calcium ion from trypsin to the inhibitor may be related to conformational rearrangements in the solvent-free and likely collapsed complex. However, under conditions leading to the increase in complex charge state, the appearance of the cationized trypsin molecule was detected during complex dissociation, thus reflecting different pathways of the evolution of complex conformation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号