首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the applicability of cluster models to study the chemical reactivity of carbon nanotubes
Authors:Denis Pablo A  Iribarne Federico
Institution:Computational Nanotechnology, DETEMA, Facultad de Química, UDELAR, CC 1157, 11800 Montevideo, Uruguay. pablod@fq.edu.uy
Abstract:We have performed a comparative study on the reactivity of metallic and semiconducting nanotubes using infinite and finite models. Infinite models were created using periodic boundary conditions while finite ones were constructed by means of hydrogen terminated nanotubes sections. Cluster models systematically underestimate the reactivity of metallic single wall carbon nanotube (SWCNT)s. We have confirmed that metallic nanotubes are more reactive than semiconducting species, in disagreement with previous works. The differences can be attributed to the presence of an instability in the singlet ground state of the wavefunction corresponding to semiconducting nanotubes clusters. When lower electronic states of the pristine cluster are considered, semiconducting nanotubes become less reactive as compared with metallic SWCNTs. Particularly, if an antiferromagnetic solution is considered for the semiconducting (10,0) SWCNT cluster, it becomes less reactive than the (5,5) SWCNT, as observed for infinite models. Because semiconducting nanotubes are less reactive than metallic counterparts, their reaction energies converge faster to the values observed for graphene. For a 1.6-nm diameter semiconducting nanotube, the addition energy is comparable with graphene. Thus, semiconducting nanotubes with diameters larger than 1.6 nm are going to be as reactive as graphene and the effects of curvature will be unimportant.
Keywords:carbon nanotubes  graphene  density functional theory  free radicals  dipolar cycloadditions  periodic boundary conditions
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号