首页 | 本学科首页   官方微博 | 高级检索  
     


Phonon States and Dispersive Spectra of Polar Optical Phonons in Quasi-One-Dimensional Nanowires of Wurtzite ZnO and Zinc-Blend MgO Semiconductors
Authors:ZHANG Li
Affiliation:Department of Mechanism and Electronics, Guangzhou Panyu Polytechnic, Guangzhou 511483, China
Abstract:Within the framework of the macroscopic dielectric continuum model and Loudon's uniaxial crystal model, the phonon modes of a wurtzite/zinc-blende one-dimensional (1D) cylindrical nanowire (NW) are derived and studied. The analytical phonon states of phonon modes are given. It is found that there exist two types of polar phonon modes, i.e. interface optical (IO) phonon modes and the quasi-confined (QC) phonon modes existing in 1D wurtzite/zinc-blende NWs. Via the standard procedure of field quantization, the Fröhlich electron-phonon interaction Hamiltonians are obtained. Numerical calculations of dispersive behavior of these phonon modes on a wurtzite/zinc-blende ZnO/MgO NW are performed. The frequency ranges of the IO and QC phonon modes of the ZnO/MgO NWs are analyzed and discussed. It is found that the IO modes only exist in one frequency range, while QC modes may appear in three frequency ranges. The dispersive properties of the IO and QC modes on the free wave-number kz and the azimuthal quantum number m arediscussed. The analytical Hamiltonians of electron-phonon interaction obtained here are quite useful for further investigating phonon influence on optoelectronics properties of wurtzite/zinc-blende 1D NW structures.
Keywords:ZnO/MgO nanowires   surface optical and quasi-confine phonon modes   electron-phonon interactions
本文献已被 维普 等数据库收录!
点击此处可从《理论物理通讯》浏览原始摘要信息
点击此处可从《理论物理通讯》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号