1. CEB – Centre of Biological Engineering, LIBRO – Laboratório de Investiga??o em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal;2. Biomedical Engineering Department, Northwestern University, Evanston, IL, USA;3. Department of Bioengineering and Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
Abstract:
Given alginate's contribution to Pseudomonas aeruginosa virulence, it has long been considered a promising target for interventional therapies, which have been performed by using the enzyme alginate lyase. In this work, instead of treating pre‐established mucoid biofilms, alginate lyase is immobilized onto a surface as a preventive measure against P. aeruginosa adhesion. A polydopamine dip‐coating strategy is employed for functionalization of polycarbonate surfaces. Enzyme immobilization is confirmed by surface characterization. Surfaces functionalized with alginate lyase exhibit anti‐adhesive properties, inhibiting the attachment of the mucoid strain. Moreover, surfaces modified with this enzyme also inhibit the adhesion of the tested non‐mucoid strain. Unexpectedly, treatment with heat‐inactivated enzyme also inhibits the attachment of mucoid and non‐mucoid P. aeruginosa strains. These findings suggest that the antibacterial performance of alginate lyase functional coatings is catalysis‐independent, highlighting the importance of further studies to better understand its mechanism of action against P. aeruginosa strains.