首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nanoparticle adsorption on a weak polyelectrolyte. Stiffness, pH, charge mobility, and ionic concentration effects investigated by Monte Carlo simulations
Authors:Ulrich Serge  Seijo Marianne  Laguecir Abohachem  Stoll Serge
Institution:Department of Inorganic, Analytical and Applied Chemistry, University of Geneva, Sciences II, 30 Quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
Abstract:Monte Carlo simulations have been used to study two different models for a weak linear polyelectrolyte in the presence of nanoparticles: (i) a rodlike and (ii) a flexible polyelectrolytes. The use of simulated annealing has made it possible to simulate a polyelectrolyte chain in the presence of several nanoparticles by improving conformation sampling and avoiding multiple minima problems when dense conformations are produced. Nanoparticle distributions along the polymer backbone were analyzed versus the ionic concentration, polyelectrolyte stiffness, and nanoparticle surface charge. Titration curves were calculated and the influences of the ionic concentration, solution pH, and number of adsorbed nanoparticles on the acid/base polyelectrolyte properties have been systematically investigated. The subtle balance of attractive and repulsive interactions has been discussed, and some characteristic conformations are presented. The comparison of the two limit models provides a good representation of the stiffness influence on the complex formation. In some conditions, overcharging was obtained and presented with respect to both the polyelectrolyte and nanoparticle as the central element. Finally, the charge mobility influence along the polyelectrolyte backbone was investigated by considering annealed and quenched polyelectrolyte chains.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号