首页 | 本学科首页   官方微博 | 高级检索  
     


Schwarz preconditioners for the spectral element discretization of the steady Stokes and Navier-Stokes equations
Authors:Mario A. Casarin
Affiliation:(1) IMECC – UNICAMP, Caixa Postal 6065, 13081 – 970 – Campinas SP, Brazil; e-mail: casarin@ime.unicamp.br , BR
Abstract:Summary. The - spectral element discretization of the Stokes equation gives rise to an ill-conditioned, indefinite, symmetric linear system for the velocity and pressure degrees of freedom. We propose a domain decomposition method which involves the solution of a low-order global, and several local problems, related to the vertices, edges, and interiors of the subdomains. The original system is reduced to a symmetric equation for the velocity, which can be solved with the conjugate gradient method. We prove that the condition number of the iteration operator is bounded from above by , where C is a positive constant independent of the degree N and the number of subdomains, and is the inf-sup condition of the pair -. We also consider the stationary Navier-Stokes equations; in each Newton step, a non-symmetric indefinite problem is solved using a Schwarz preconditioner. By using an especially designed low-order global space, and the solution of local problems analogous to those decribed above for the Stokes equation, we are able to present a complete theory for the method. We prove that the number of iterations of the GMRES method, at each Newton step, is bounded from above by . The constant C does not depend on the number of subdomains or N, and it does not deteriorate as the Newton iteration proceeds. Received March 2, 1998 / Revised version received October 12, 1999 / Published online March 20, 2001
Keywords:Mathematics Subject Classification (1991): 41A10   65N30   65N35   65N55
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号