首页 | 本学科首页   官方微博 | 高级检索  
     


On the information-based complexity of stochastic programming
Authors:Gabriela Tavares  Panos Parpas
Affiliation:Department of Computing, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
Abstract:Existing complexity results in stochastic linear programming using the Turing model depend only on problem dimensionality. We apply techniques from the information-based complexity literature to show that the smoothness of the recourse function is just as important. We derive approximation error bounds for the recourse function of two-stage stochastic linear programs and show that their worst case is exponential and depends on the solution tolerance, the dimensionality of the uncertain parameters and the smoothness of the recourse function.
Keywords:Optimization   Stochastic programming   Uncertainty   Complexity   Information-based complexity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号