首页 | 本学科首页   官方微博 | 高级检索  
     检索      

动态氢气泡/牺牲铜模板法制备蜂窝AuPtCu电催化剂用于甲酸氧化
引用本文:陈莹莹,刘欢,程彦,谢青季.动态氢气泡/牺牲铜模板法制备蜂窝AuPtCu电催化剂用于甲酸氧化[J].化学学报,2020,78(4):330-336.
作者姓名:陈莹莹  刘欢  程彦  谢青季
作者单位:湖南师范大学化学化工学院 化学生物学及中药分析教育部重点实验室 长沙 410081
基金项目:湖南美蓉学者计划;湖南省科技厅项目;国家自然科学基金
摘    要:微/纳多孔金属材料具有高比表面积等优点,在电化学等领域广受关注.本工作通过动态氢气泡模板法,在镀金玻璃碳电极(Aupla/GCE)上电沉积三维蜂窝状多孔纳米AuPtCu (3DHPN-AuPtCu)复合材料,再阳极溶出Cu,制备了3DHPN-AuPt Cu/Aupla/GCE.采用循环伏安法(CV)、金相显微镜、扫描电子显微镜、能量色散谱和电感耦合等离子体-原子发射光谱等手段表征了相关修饰电极.所制3DHPN-AuPt Cu/Aupla/GCE在含0.2 mol/L HCOOH的0.5 mol/L H2SO4水溶液中,电催化氧化甲酸的峰电流密度为12.5 m A·cmPt^-2(CV,-0.3~1.0 V, 50 m V/s),优于有关对照电极和很多已报道的Pt复合物修饰电极,表明通过这种动态氢气泡/牺牲铜双模板法可制备出电催化性能优异的金属蜂窝结构.

关 键 词:动态氢气泡模板  牺牲铜模板  蜂窝结构AuPtCu电催化剂  甲酸氧化

Preparation of Honeycomb-structured AuPtCu Electrocatalyst by Dynamic Hydrogen Bubble and Sacrificial Cu Templates for Oxidation of Formic Acid
Chen Yingying,Liu Huan,Cheng Yan,Xie Qingji.Preparation of Honeycomb-structured AuPtCu Electrocatalyst by Dynamic Hydrogen Bubble and Sacrificial Cu Templates for Oxidation of Formic Acid[J].Acta Chimica Sinica,2020,78(4):330-336.
Authors:Chen Yingying  Liu Huan  Cheng Yan  Xie Qingji
Institution:Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research(Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081
Abstract:Improving the performance of electrocatalytic formic acid oxidation is the key issue to develop high-performance direct formic acid fuel cells(DFAFC). Pt-based and Pd-based materials are the important electrocatalysts for formic acid oxidation. Micro/nano-porous metal materials are widely concerned in the electrochemistry field due to the high specific electrode-surface area. The dynamic hydrogen bubble template(DHBT) method has been widely used for preparing the three-dimensional honeycomb-like porous nano-metals(3 DHPNMs). However, as far as we know, the use of a sacrificial metal template to prepare the 3 DHPNMs with improved performance for the electrocatalytic oxidation of small organic molecules has not been reported. Herein, a three-dimensional honeycomb-like porous nano-AuPtCu(3 DHPN-AuPtCu)composite was electrodeposited on a gold-plated glassy carbon electrode(Aupla/GCE) by the DHBT method, followed by anodic stripping of Cu to yield a 3 DHPN-AuPtCu/Aupla/GCE. The relevant modified electrodes were characterized by cyclic voltammetry(CV), metallographic microscopy, scanning electron microscopy(SEM), energy dispersive spectroscopy and inductively coupled plasma-atomic emission spectrometry. The SEM results clearly revealed that the use of the sacrificial Cu template can modulate the metal-honeycomb structure, and the 3 DHPN-AuPtCu/Aupla/GCE can thus possess the better micro/nano-porous structure and the improved electrocatalytic performance than a Cu-template-free3 DHPN-AuPt/Aupla/GCE. In our opinion, the simultaneous electrodeposition of Cu can intervene in the electrodeposition of Au and Pt, and thus a new structure with more active sites exposed and the electrocatalysis performance improved can be obtained after the anodic stripping of electrodeposited Cu. As a result, the 3 DHPN-Au PtCu/Aupla/GCE exhibited high anti-poisoning nature and high stability, because many discontinuous Pt atoms on this electrode can suppress the formation of adsorption-state COads during the electrocatalytic oxidation of formic acid. The electrocatalytic oxidation peak current density on 3 DHPN-AuPtCu/Aupla/GCE in 0.5 mol/L aqueous H2SO4 containing 0.2 mol/L HCOOH was 12.5 m A·cmPt^-2(CV,-0.3~1.0 V, 50 m V/s), which is superior to the control electrodes and many reported Pt-based electrocatalysis electrodes. The suggested double-template method for preparing honeycomb-structured micro/nano-porous metal materials with improved performance has the potential for wider electrocatalysis and electroanalysis applications.
Keywords:dynamic hydrogen bubble template  sacrificial Cu template  honeycomb-structured AuPtCu electrocatalyst  formic acid oxidation  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《化学学报》浏览原始摘要信息
点击此处可从《化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号