首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Constraint on nuclear symmetry energy imposed by f-mode oscillation of neutron stars
Authors:Jing Zhang  Dehua Wen  Yuxi Li
Institution:School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China
Abstract:Due to improvements in the sensitivity of gravitational wave (GW) detectors, the detection of GWs originating from the fundamental quasi-normal mode (f-mode) of neutron stars has become possible. The future detection of GWs originating from the f-mode of neutron stars will provide a potential way to improve our understanding of the nature of nuclear matter inside neutron stars. In this work, we investigate the constraint imposed by the f-mode oscillation of neutron stars on the symmetry energy of nuclear matter using Bayesian analysis and parametric EOS. It is shown that if the frequency of the f-mode of a neutron star of known mass is observed precisely, the symmetry energy at twice the saturation density (Esym(2ρ0)) of nuclear matter can be constrained within a relatively narrow range. For example, when all the following parameters are within the given intervals: 220 ≤ K0 ≤ 260 MeV, 28 ≤ Esym(ρ0) ≤ 36 MeV, 30 ≤ L ≤ 90 MeV, −800 ≤ J0 ≤ 400 MeV, − 400 ≤ Ksym ≤ 100 MeV, −200 ≤ Jsym ≤ 800 MeV, Esym(2ρ0) will be constrained to within ${48.8}_{-5.5}^{+6.6}$ MeV if the f-mode frequency of a canonical neutron star (1.4 M) is observed to be 1.720 kHz with a 1% relative error. Furthermore, if only f-mode frequency detection is available, i.e. there is no stellar mass measurement, a precisely detected f-mode frequency can also impose an accurate constraint on the symmetry energy. For example, given the same parameter space and the same assumed observed f-mode frequency mentioned above, and assuming that the stellar mass is in the range of 1.2–2.0 M, Esym(2ρ0) will be constrained to within ${49.5}_{-6.8}^{+8.1}\,\mathrm{MeV}$. In addition, it is shown that a higher slope of 69 ≤ L ≤ 143 MeV will give a higher posterior distribution of Esym(2ρ0), ${53.8}_{-6.4}^{+7.0}\,\mathrm{MeV}$.
Keywords:f-mode  Bayesian analysis  nuclear symmetry energy  neutron star  
点击此处可从《理论物理通讯》浏览原始摘要信息
点击此处可从《理论物理通讯》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号