首页 | 本学科首页   官方微博 | 高级检索  
     


The Remarkable Nature of Radially Symmetric Deformation of Spherically Uniform Linear Anisotropic Elastic Solids
Authors:T.C.T. Ting
Affiliation:(1) Department of Civil and Materials Engineering, University of Illinois at Chicago, 842 West Taylor Street (M/C246), Chicago, Illinois, 60607-7023, U.S.A.
Abstract:Antman and Negron-Marrero [1] have shown the remarkable nature of a sphere of nonlinear elastic material subjected to a uniform pressure at the surface of the sphere. When the applied pressure exceeds a critical value the stress at the center r=0 of the sphere is infinite. Instead of nonlinear elastic material, we consider in this paper a spherically uniform linear anisotropic elastic material. It means that the stress-strain law referred to a spherical coordinate system is the same for any material point. We show that the same remarkable nature appears here. What distinguishes the present case from that considered in [1] is that the existence of the infinite stress at r=0 is independent of the magnitude of the applied traction σ0 at the surface of the sphere. It depends only on one nondimensional material parameter κ. For a certain range of κ a cavitation (if σ0>0) or a blackhole (if σ0<0) occurs at the center of the sphere. What is more remarkable is that, even though the deformation is radially symmetric, the material at any point need not be transversely isotropic with the radial direction being the axis of symmetry as assumed in [1]. We show that the material can be triclinic, i.e., it need not possess a plane of material symmetry. Triclinic materials that have as few as two independent elastic constants are presented. Also presented are conditions for the materials that are capable of a radially symmetric deformation to possess one or more symmetry planes. This revised version was published online in August 2006 with corrections to the Cover Date.
Keywords:elasticity  anisotropy  triclinic materials  stress singularity.
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号