首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A combined photocatalytic determination system for chemical oxygen demand with a highly oxidative reagent
Authors:Zhang Aiyong  Zhou Minghua  Zhou Qixing
Institution:Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
Abstract:This study focuses on the proposal and validation of a combined photocatalytic (PC) system and a three-parameterized procedure for the determination of chemical oxygen demand (COD; PcCOD(combined)), with a highly oxidative reagent utilized as a photoelectron scavenger and signal indicator. The PcCOD(combined) was the functional combination of photon-efficient thin-layer photocatalytic oxidation, conventional bulk-phase photocatalytic oxidation and photocarrier-efficient high-activity photocatalytic reduction in one single photodigestion system, and consequently, this system possessed high photon-utilization efficiency, automatic stirring function and satisfactory determination characteristics. In comparison with the conventional one-parameterized procedure, the three-parameterized procedure introduces the blank and total photocatalytic reduction responses as two of the three significant analytical parameters. Under the optimized pH value of 3.0-4.5 and a rotating rate of 40 rpm, the representative KMnO(4) species was used for the PcCOD(combined) system as the combined high-activity oxidant, and a narrow and reliable analytical linear range of 0-260 mg L(-1) was achieved during the 10 min duration of the determinations. No observable interference of Cl(-) was found at concentration of the ion up to 2000 mg L(-1). A real sample analysis indicated that the measured values for the PcCOD(combined) were all within a relative deviation below 5% of COD(Cr) of the standard method, which further validates the practical feasibility of the proposed PcCOD(combined) system.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号