首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Calculation of photoelectron spectra of molybdenum and tungsten complexes using Green's functions methods
Authors:Bayse Craig A  Ortwine Kristine N
Institution:Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, USA.
Abstract:Green's functions calculations are presented for several complexes of molybdenum and tungsten, two metals that are similar structurally but display subtle, but significant, differences in electronic structure. Outer valence Green's functions IPs for M(CO)6, M(Me)6, MH6, MCl4O](-), and MO4](-) (M = Mo, W) are generally within +/-0.2 eV of available experimental photoelectron spectra. The calculations show that electrons in M-L bonding orbitals are ejected at lower energies for Mo while the detachment energy for electrons in d orbitals varies with metal and complex. For the metal carbonyls, the quasiparticle picture assumed in OVGF breaks down for the inner valence pi CO molecular orbitals due to the coupling of two-hole-one-particle charge transfer states to the one-hole states. Incorporation of the 2h1p states through a Tamm-Dancoff approximation calculation accurately represents the band due to detachment from these molecular orbitals. Though the ordering of IPs for Green's functions methods and DFT Koopmans' theorem IPs is similar for the highest IPs for most compounds considered, the breakdown of the quasiparticle picture for the metal carbonyls suggests that scaling of the latter values may result in a fortuitous or incorrect assignment of experimental VDEs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号