Two‐phase flows in karstic geometry |
| |
Authors: | Daozhi Han Dong Sun Xiaoming Wang |
| |
Affiliation: | Department of Mathematics, Florida State University, , Tallahassee, FL 32306, USA |
| |
Abstract: | Multiphase flow phenomena are ubiquitous. Common examples include coupled atmosphere and ocean system (air and water), oil reservoir (water, oil, and gas), and cloud and fog (water vapor, water, and air). Multiphase flows also play an important role in many engineering and environmental science applications. In some applications such as flows in unconfined karst aquifers, karst oil reservoir, proton membrane exchange fuel cell, multiphase flows in conduits, and in porous media must be considered together. Geometric configurations that contain both conduit (or vug) and porous media are termed karstic geometry. Despite the importance of the subject, little work has been performed on multiphase flows in karstic geometry. In this paper, we present a family of phase–field (diffusive interface) models for two‐phase flow in karstic geometry. These models together with the associated interface boundary conditions are derived utilizing Onsager's extremum principle. The models derived enjoy physically important energy laws. A uniquely solvable numerical scheme that preserves the associated energy law is presented as well. Copyright © 2013 John Wiley & Sons, Ltd. |
| |
Keywords: | two‐phase flow diffusive interface model phase– field model karstic geometry Onsager's extremum principle energy law time discretization unique solvability |
|
|