Affiliation: | 1.Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089-1211, USA ;2.Department of Petroleum Engineering, University of Wyoming, Laramie, WY, 82071, USA ; |
Abstract: | Flow, transport, mechanical, and fracture properties of porous media depend on their morphology and are usually estimated by experimental and/or computational methods. The precision of the computational approaches depends on the accuracy of the model that represents the morphology. If high accuracy is required, the computations and even experiments can be quite time-consuming. At the same time, linking the morphology directly to the permeability, as well as other important flow and transport properties, has been a long-standing problem. In this paper, we develop a new network that utilizes a deep learning (DL) algorithm to link the morphology of porous media to their permeability. The network is neither a purely traditional artificial neural network (ANN), nor is it a purely DL algorithm, but, rather, it is a hybrid of both. The input data include three-dimensional images of sandstones, hundreds of their stochastic realizations generated by a reconstruction method, and synthetic unconsolidated porous media produced by a Boolean method. To develop the network, we first extract important features of the images using a DL algorithm and then feed them to an ANN to estimate the permeabilities. We demonstrate that the network is successfully trained, such that it can develop accurate correlations between the morphology of porous media and their effective permeability. The high accuracy of the network is demonstrated by its predictions for the permeability of a variety of porous media. |