首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Symplectic and multisymplectic numerical methods for Maxwell’s equations
Authors:Y Sun  PSP Tse
Institution:LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, 100190 Beijing, China
Abstract:In this paper, we compare the behaviour of one symplectic and three multisymplectic methods for Maxwell’s equations in a simple medium. This is a system of PDEs with symplectic and multisymplectic structures. We give a theoretical discussion of how some numerical methods preserve the discrete versions of the local and global conservation laws and verify this behaviour in numerical experiments. We also show that these numerical methods preserve the divergence. Furthermore, we extend the discussion on dispersion for (multi)symplectic methods applied to PDEs with one spatial dimension, to include anisotropy when applying (multi)symplectic methods to Maxwell’s equations in two spatial dimensions. Lastly, we demonstrate how varying the Courant–Friedrichs–Lewy (CFL) number can cause the (multi)symplectic methods in our comparison to behave differently, which can be explained by the study of backward error analysis for PDEs.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号