首页 | 本学科首页   官方微博 | 高级检索  
     

基于GA-SVM的水资源可持续利用评价
引用本文:任永泰,马雪倩,张贵杰. 基于GA-SVM的水资源可持续利用评价[J]. 数学的实践与认识, 2013, 43(3)
作者姓名:任永泰  马雪倩  张贵杰
作者单位:1. 东北农业大学理学院,黑龙江哈尔滨,150030
2. 东北农业大学工程学院,黑龙江哈尔滨,150030
基金项目:国家自然科学基金,黑龙江省研究生创新科研项目资金
摘    要:把水资源可持续利用评价问题看成是一个分类问题,利用支持向量机良好的鲁棒性和分类精确性进行评价,并用遗传算法优化了SVM的参数,使其分类精确度更高.对黑龙江省十三个地区进行了实例应用,与人工神经网络和GD-IIM法的结果进行了比较,结果表明,支持向量机模型简单、通用、精度高,可在水资源可持续利用实际评价中推广应用.

关 键 词:水资源可持续利用  评价  支持向量机  遗传算法优化  神经网络

Evaluation of Water Resources Sustainable Utilization Based on GA-SVM
REN Yong-tai , MA Xue-qian , ZHANG Gui-jie. Evaluation of Water Resources Sustainable Utilization Based on GA-SVM[J]. Mathematics in Practice and Theory, 2013, 43(3)
Authors:REN Yong-tai    MA Xue-qian    ZHANG Gui-jie
Abstract:Regard the evaluation of water resources sustainnable utilization as the pattern of classification,and it's evaluated by SVM which has good robustness and classification accuracy.Meanwhile,the parameters of SVM are optimized by genetic algorithm,which makes better classification accuracy.At last,this model is applied to thirteen regions in Heilongjiang province,and the results are compared with artificial neural network and GDIIM method's results,which show that support vector machine model is simple,universal and accurate,and it can be applicated in evaluation of water resources sustainable utilization in practice.
Keywords:water resources sustainable utilization  evaluation  support vector machine  genetic algorithm  artificial neural network
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号