首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Temporal Homogenization of Linear ODEs,with Applications to Parametric Super-Resonance and Energy Harvest
Authors:Molei Tao  Houman Owhadi
Abstract:We consider the temporal homogenization of linear ODEs of the form \({\dot{x}=Ax+\epsilon P(t)x+f(t)}\), where P(t) is periodic and \({\epsilon}\) is small. Using a 2-scale expansion approach, we obtain the long-time approximation \({x(t)\approx {\rm exp}(At) \left( \Omega(t)+\int_0^t {\rm exp}(-A \tau) f(\tau) {\rm d}\tau \right)}\), where \({\Omega}\) solves the cell problem \({\dot{\Omega}=\epsilon B \Omega + \epsilon F(t)}\) with an effective matrix B and an explicitly-known F(t). We provide necessary and sufficient conditions for the accuracy of the approximation (over a \({{\mathcal{O}}(\epsilon^{-1})}\) time-scale), and show how B can be computed (at a cost independent of \({\epsilon}\)). As a direct application, we investigate the possibility of using RLC circuits to harvest the energy contained in small scale oscillations of ambient electromagnetic fields (such as Schumann resonances). Although a RLC circuit parametrically coupled to the field may achieve such energy extraction via parametric resonance, its resistance R needs to be smaller than a threshold \({\kappa}\) proportional to the fluctuations of the field, thereby limiting practical applications. We show that if n RLC circuits are appropriately coupled via mutual capacitances or inductances, then energy extraction can be achieved when the resistance of each circuit is smaller than \({n\kappa}\). Hence, if the resistance of each circuit has a non-zero fixed value, energy extraction can be made possible through the coupling of a sufficiently large number n of circuits (\({n\approx 1000}\) for the first mode of Schumann resonances and contemporary values of capacitances, inductances and resistances). The theory is also applied to the control of the oscillation amplitude of a (damped) oscillator.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号