首页 | 本学科首页   官方微博 | 高级检索  
     

氧化石墨烯插层聚β-羟基丁酸酯复合材料的结晶形态与宏观性能
引用本文:张志博,尚涵,徐文轩,韩广东,崔金声,杨皓然,李瑞鑫,张生辉,徐欢. 氧化石墨烯插层聚β-羟基丁酸酯复合材料的结晶形态与宏观性能[J]. 高等学校化学学报, 2022, 43(2): 20210566-69. DOI: 10.7503/cjcu20210566
作者姓名:张志博  尚涵  徐文轩  韩广东  崔金声  杨皓然  李瑞鑫  张生辉  徐欢
作者单位:中国矿业大学材料与物理学院,徐州221116;浩珂科技有限公司,济宁272100;郑州轻工业大学材料与化学工程学院,河南省表界面科学重点实验室,郑州450002;江苏爱德福乳胶制品有限公司,扬州225200
基金项目:国家自然科学基金(批准号:52003292,51803192);江苏省自然科学基金(批准号:BK20200661);中国博士后科学基金(批准号:2020M681763);江苏省博士后科研资助计划项目(批准号:2021K578C);中央高校基本科研业务费专项资金(批准号:2021QN1115)资助。
摘    要:由微生物直接合成的聚β-羟基丁酸酯(PHB)可实现从原料合成到加工成型和回收降解的全周期生态循环, 在生物医用和包装材料等领域有着重要的应用前景. 受制于PHB自身成核能力差导致的球晶尺寸偏大等不利结晶形态特点, 其制品存在抗冲韧性差、 延展率低和易蠕变等缺陷. 本文提出了水相加工和受限成型相结合的制备方法, 将氧化石墨烯(GO)纳米片在水溶液中充分剥离后, 直接包覆于亚微米级PHB微颗粒表面形成PHB@GO复合物, 然后在压力场下受限成型获得GO插层PHB纳米复合材料. 研究结果表明, 即使在极低GO添加量(质量分数0.1%)下, PHB的等温和非等温结晶能力都有显著提高, 并获得晶核密度高且晶体尺寸均一的结晶形态. 插层GO纳米片还促使复合材料发生了脆-韧转变, 使其拉伸强度和延展性均成倍提高, 同时显著增强了动态热力学性能、 抗蠕变性能和热学性能.

关 键 词:聚β-羟基丁酸酯  氧化石墨烯  插层结构  结晶形态  力学性能
收稿时间:2021-08-11

Self-Assembly of Graphene Oxide at Poly(3-hydroxybutyrate) Microparticles Toward High-performance Intercalated Nanocomposites
ZHANG Zhibo,SHANG Han,XU Wenxuan,HAN Guangdong,CUI Jinsheng,YANG Haoran,LI Ruixin,ZHANG Shenghui,XU Huan. Self-Assembly of Graphene Oxide at Poly(3-hydroxybutyrate) Microparticles Toward High-performance Intercalated Nanocomposites[J]. Chemical Research In Chinese Universities, 2022, 43(2): 20210566-69. DOI: 10.7503/cjcu20210566
Authors:ZHANG Zhibo  SHANG Han  XU Wenxuan  HAN Guangdong  CUI Jinsheng  YANG Haoran  LI Ruixin  ZHANG Shenghui  XU Huan
Affiliation:1.School of Materials Science and Physics,China University of Mining and Technology,Xuzhou 221116,China;2.Haoke Technology Co. ,Ltd. ,Jining 272100,China;3.State Laboratory of Surface and Interface Science and Technology,School of Material and Chemical Engineering,Zhengzhou University of Light Industry,Zhengzhou 450002,China;4.Jiangsu Aidefu Latex Products Co. ,Ltd. ,Yangzhou 225200,China
Abstract:As one of the most important natural biopolymers, poly(3-hydroxybutyrate)(PHB) has been identified by an ecofriendly lifecycle from bacterial synthesis to practical processing and recycling, holding great promise in applications for biomedical and packaging materials. However, due to the intrinsic characters including poor self- nucleation capability and excessively large spherulites, the application of PHB is dwarfed by low impact resistance, poor ductility and high creep compliance. Herein, a combination of aqueous processing and confined structuring was proposed to prepare graphene oxide(GO)-intercalated PHB nanocomposites. In specific, GO nanosheets were exfo- liated and dispersed in water, which would encapsulate the submicron PHB microspheres to form the PHB@GO self-assemblies, followed by confined structuring under a high pressure above the melting temperature of PHB. Albeit at an ultralow loading of 0.1%(mass fraction), the intercalated GO nanosheets showed high capability to enhanced the isothermal and non-isothermal crystallization kinetics of PHB, resulting in highly dense spherulites with a relatively uniform size. An unexcepted brittle-ductile transition was developed in the intercalated nanocomposites, leading to remarkable increase in tensile strength and elongation at break. This was accompanied by significant rise of thermomechanical properties and creep resistance, especially at high temperatures. The flexibility in the choice of functional nanofillers permits broad applications in the fabrication of high-performance PHB-based composites.
Keywords:Poly(3-hydroxybutyrate)  Graphene oxide  Intercalated structure  Crystalline morphology  Mechanical property
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《高等学校化学学报》浏览原始摘要信息
点击此处可从《高等学校化学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号