首页 | 本学科首页   官方微博 | 高级检索  
     


Relationship between melting behavior and morphological changes of semicrystalline polymers
Authors:Zhiyong Wei  Yang Yu  Cheng Zhou  Liuchun Zheng  Xuefei Leng  Yang Li
Affiliation:1.State Key Laboratory of Fine Chemicals, Department of Polymer Science and Materials, School of Chemical Engineering,Dalian University of Technology,Dalian,People’s Republic of China;2.Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, Institute of Chemistry,Chinese Academy of Sciences,Beijing,People’s Republic of China
Abstract:The present study on the case of poly(hexamethylene succinate) is to provide a basis for a better understanding of the subtle relationship between melting behavior and morphological changes of semicrystalline polymers. The melting behavior and morphological changes of poly(hexamethylene succinate) during both isothermal secondary crystallization and annealing processes were investigated by DSC and SAXS. DSC results showed that, with increasing crystallization time or annealing time, the melting endotherm continuously shifted to higher temperature, which suggested that some minor structural or morphological changes must occur. However, almost no changes at all on the crystal thickness were observed from SAXS measurements. The observed evidence confirmed that the increase in the melting temperature is not attributed to crystal thickening but crystal perfection. More exactly, the rearrangement and smoothing of tie molecules at the folding surface result in the reduction of the fold surface free energy, which dominantly contributes to the increase in the melting peak temperature. The origin of the new endothermic peak observed after annealing at elevated temperature was also discussed. TMDSC results indicated that the annealing peak resulted from the enthalpy relaxation and devitrification transition of rigid amorphous fraction formed by the driving force of thermodynamic nonequilibrium, rather than usually regarded as the melting of thin lamellae or imperfect crystals formed by annealing secondary crystallization.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号