首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermal degradation kinetics and reaction models of 1,3,5-triamino-2,4,6-trinitrobenzene-based plastic-bonded explosives containing fluoropolymer matrices
Authors:Arjun Singh  Tirupati Chander Sharma  Prateek Kishore
Institution:1.Terminal Ballistics Research Laboratory,Defence Research and Development Organisation, Ministry of Defence,Chandigarh (UT),India
Abstract:In this article, thermal degradation behavior of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB)-based plastic-bonded explosives (PBXs) bonded with a different fluoropolymer matrices namely indigenous poly(vinylidene fluoride-chlorotrifluoroethylene) (FKM), FK 800, fluoroplastic F-32L and fluororubber SKF 32 was investigated through non-isothermal thermogravimetric analysis (TG) technique under nitrogen atmosphere. It was observed that the mass loss of PBXs containing FKM and FK 800 matrices occurred in three steps. The mass loss of PBXs containing fluoroplastic F-32L and fluororubber SKF 32 occurred in two steps. Kinetics were investigated through non-isothermal TG at different heating rates for the first step of degradation by means of model-free Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS) methods. The activation energies calculated by applying FWO method are in good agreement and very close to those obtained by KAS method. The results revealed that the effect of the polymer matrices on the thermal degradation reaction of TATB was significantly observed especially different outcomes of kinetic parameters. The reaction models for degradation were also studied by Criado method. The reaction models are probably best described by the power law and diffusion models.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号