首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Single particle tracking of complex diffusion in membranes: simulation and detection of barrier, raft, and interaction phenomena
Authors:Jin Songwan  Verkman A S
Institution:Departments of Medicine and Physiology, Cardiovascular Research Institute, University of California, San Francisco, California 94143-0521, USA.
Abstract:Single particle tracking is being used increasingly to follow the motion of membrane-associated receptors and lipids. Anomalous and complex diffusive behaviors are generally found in cell membranes. We developed computational algorithms to simulate particle trajectories and to detect complex diffusive behaviors in two dimensions, including confined and convective diffusion, intramembrane barrier and raft phenomena, and interparticle interactions. Little useful information regarding barrier, raft, and interaction effects were provided by standard computational procedures for identification of anomalous diffusion, including analysis of mean squared displacement, distributions of diffusion rates and range, and time evolution of particle position. New algorithms were developed and optimized to detect complex diffusive behaviors from simulated single particle trajectories. A barrier detection algorithm was developed on the basis of spatial averaging of particle positions in trajectories. A raft detection algorithm utilized spatially resolved diffusion coefficients and particle density functions. An interaction algorithm utilized interparticle distance distributions. The algorithms developed here are applicable to identify biologically important diffusive phenomena in cell membranes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号