首页 | 本学科首页   官方微博 | 高级检索  
     检索      


201 MeV proton excitation of giant resonances in 208Pb: Macroscopic and microscopic analysis
Authors:C Djalali  N Marty  M Morlet  A Willis
Institution:Institut de Physique Nucléaire, 91406 Orsay Cedex, France
Abstract:The region of the giant resonances in 208Pb has been investigated by inelastic scattering of 201 MeV protons. To test the analysis, angular distributions were measured for the low-lying 3?, 5?, 2+ and 4+ collective states. The giant isoscalar quadrupole resonance (ISGQR) is split into two structures, one at 9.0 MeV with a full width at half-maximum Γ = 1.0 MeV, the other one at 10.6 MeV (Γ = 2.0 MeV), with fine structures at 8.9, 9.3, 10.1, 10.6 and 11 MeV. A macroscopic analysis using the distorted-wave Born approximation (DWBA) leads for the low-lying collective levels, as well as for the ISGQR, to transition probabilities too small by a factor of two, compared with those obtained in other reactions. Microscopic analysis using the distorted-wave impulse approximation (DWIA), with three different sets of random phase approximation (RPA) transition densities, is in very good agreement with the data. At forward angles, in the 12 to 16 MeV excitation energy region, a strong resonance at 13.5 MeV (Γ = 3.6 MeV) is accounted for by the Coulomb excitation of the isovector giant dipole resonance (IVGDR); at larger angles the results are compatible with the excitation of the isoscalar monopole resonance (ISGMR) located at 13.9 MeV (Γ = 2.6 MeV).A resonance located at 21.5 MeV (Γ = 5.7 MeV) appears as the superposition of an isovector quadrupole resonance (IVGQR) excited by Coulomb interaction and a resonance of multipolarity L = 1 ΔT = 0 (ISGDR “squeezing mode”).
Keywords:Nuclear reactions
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号