首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Improving Quantum Metrology via Purifying and Distilling Noisy Probe States
Authors:Jun‐Long Zhao  Fan‐Zhen Kong  Wen‐Jing Chu  Ming Yang  Zhuo‐Liang Cao
Abstract:In quantum metrology, the precision of unknown parameter estimation is studied in the quantum regime, and the choice of the probe state plays an important role in determining the precision of the parameter to be estimated. The quality of quantum metrology will be reduced in the presence of quantum noise during the memory time of probe states after preparation. Meanwhile the noisy probe state can be manipulated by different protocols such as single‐qubit purification, entanglement purification, and entanglement distillation etc. In this paper, the effects of these manipulations on the usefulness, that is, quantum Fisher information (QFI), of the noisy probe state in quantum metrology are studied. The results show that joint operations in single‐qubit purification and entanglement purification processes play positive roles in enhancing the QFI of the probe states, and local measurements in entanglement purification and entanglement distillation processes play both positive and negative roles in enhancing the QFI of the probe states. In this sense, single‐qubit purification will always be helpful in parameter estimation by using single qubits as probe, and entanglement purification process maybe more suitable for improving the estimation precision when entangled‐state probe is adopted.
Keywords:entanglement distillation  entanglement purification  quantum metrology  single‐qubit purification
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号