首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Phase‐Dependent Quantum Correlation in a Cavity‐Atom System
Authors:Miaodi Guo  Hongmei Li  Rui Zhang  Xuemei Su
Abstract:A scheme to manipulate quantum correlation between output lights of a cavity‐atom system by phase control is proposed. A driving‐field phase is introduced which has a similar value with that of building up quantum correlation in a Hanbury–Brown–Twiss setup. A closed‐loop phase is formed to improve quantum coherence by phase‐dependent electromagnetically induced transparency. The closed‐loop phase has been utilized to realize quantum correlation and even quantum entanglement in the atomic system of previous work. With these two phases, a steady and maximum quantum correlation has been obtained in the scheme here. Moreover, the maximum quantum correlation is free to decoherence of this cavity‐atom system. The study on field‐intensity correlation (quantum correlation) has potential applications on correlated imaging, image encryption transmission, and the improvement of noise resistance in a quantum network.
Keywords:cavity‐QED  intensity correlation  phase control  quantum interference
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号