首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nanoroughness control of Al-Doped ZnO for high efficiency Si thin-film solar cells
Institution:1. LG Electronics Advanced Research Institute, Seoul, 137-724, South Korea;2. WCU Hybrid Materials Program, Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 151-744, South Korea
Abstract:The Al-doped ZnO (ZnO:Al) front transparent conducting oxide (TCO) for high efficiency Si thin-film solar cell has been developed using RF magnetron sputtering deposition and chemical wet etching. Microscopic surface roughness of the as-deposited ZnO:Al film estimated by spectroscopic ellipsometry is closely related to the compactness of the TCO film, and shown to be a straightforward and powerful tool to optimize the deposition conditions for the proper post-etched surface morphology. Wet-etching time is adjusted to form the U-shaped craters on the surface of the ZnO:Al film without sharp etch pits that can cause the crack-like defects in the overgrown microcrystalline Si-absorbing layers, and deteriorate the Voc and FF of the Si thin-film solar cells. That is to say, the nanoroughness control of the as-deposited TCO film with proper chemical etching is the key optimization factor for the efficiency of the solar cell. The a-Si:H/a-SiGe:H/μc-Si:H triple junction Si thin-film solar cells grown on the optimized ZnO:Al front TCO with anti-reflection coatings show higher than 14% conversion efficiency.
Keywords:Transparent conducting oxide  Al-doped ZnO  Sputtering  Thin-film solar cell
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号